Eisenstein cohomology and ratios of critical values of Rankin–Selberg L-functions

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Eisenstein Cohomology and Ratios of Critical Values of Rankin–selberg L-functions

This is an announcement of results on rank-one Eisenstein cohomology of GLN , with N ≥ 3 an odd integer, and algebraicity theorems for ratios of successive critical values of certain Rankin–Selberg L-functions for GLn ×GLn′ when n is even and n′ is odd. Résumé: Cette note est une annonce de résultats sur la cohomologie d’Eisenstein de rang un de GLN , avec N ≥ 3 un entier impair, et de théorème...

متن کامل

Eisenstein Cohomology and p - adic L - Functions

§0. Introduction. In this paper, we define the module D̃(V ) of distributions with rational poles on a finite dimensional rational vector space a V . This is an infinite dimensional vector space over Q endowed with a natural action of the reductive group GV := Aut(V ). Indeed, this action extends to a natural action of the adelic group GV (AQ). For each prime p, we define we define the notion of...

متن کامل

Weil-étale Cohomology and Special Values of L-functions

We construct the Weil-étale cohomology and Euler characteristics for a subclass of the class of Z-constructible sheaves on an open subscheme of the spectrum of the ring of integers of a number field. Then we show that the special value of an Artin L-function of toric type at zero is given by the Weil-étale Euler characteristic of an appropriate Z-constructible sheaf up to signs. As applications...

متن کامل

Critical Values of Symmetric Power L-functions

We consider the critical values of symmetric power L-functions attached to elliptic curves over Q. We show how to calculate a canonical Deligne period, and in several numerical examples, especially for sixth and tenth powers, we examine the factorisation of the rational number apparently obtained when one divides the critical value by the canonical period. This seems to provide some support for...

متن کامل

Values of symmetric cube L-functions and Fourier coefficients of Siegel Eisenstein series of degree-3

We obtain formulas for certain weighted sums of values of the symmetric square and triple product L-functions. As a consequence, we get exact values at the right critical point for the symmetric square and symmetric cube L-functions attached to certain cuspforms. We also give applications to Fourier coefficients of modular forms.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus Mathematique

سال: 2011

ISSN: 1631-073X

DOI: 10.1016/j.crma.2011.06.013