Eisenstein cohomology and ratios of critical values of Rankin–Selberg L-functions
نویسندگان
چکیده
منابع مشابه
Eisenstein Cohomology and Ratios of Critical Values of Rankin–selberg L-functions
This is an announcement of results on rank-one Eisenstein cohomology of GLN , with N ≥ 3 an odd integer, and algebraicity theorems for ratios of successive critical values of certain Rankin–Selberg L-functions for GLn ×GLn′ when n is even and n′ is odd. Résumé: Cette note est une annonce de résultats sur la cohomologie d’Eisenstein de rang un de GLN , avec N ≥ 3 un entier impair, et de théorème...
متن کاملEisenstein Cohomology and p - adic L - Functions
§0. Introduction. In this paper, we define the module D̃(V ) of distributions with rational poles on a finite dimensional rational vector space a V . This is an infinite dimensional vector space over Q endowed with a natural action of the reductive group GV := Aut(V ). Indeed, this action extends to a natural action of the adelic group GV (AQ). For each prime p, we define we define the notion of...
متن کاملWeil-étale Cohomology and Special Values of L-functions
We construct the Weil-étale cohomology and Euler characteristics for a subclass of the class of Z-constructible sheaves on an open subscheme of the spectrum of the ring of integers of a number field. Then we show that the special value of an Artin L-function of toric type at zero is given by the Weil-étale Euler characteristic of an appropriate Z-constructible sheaf up to signs. As applications...
متن کاملCritical Values of Symmetric Power L-functions
We consider the critical values of symmetric power L-functions attached to elliptic curves over Q. We show how to calculate a canonical Deligne period, and in several numerical examples, especially for sixth and tenth powers, we examine the factorisation of the rational number apparently obtained when one divides the critical value by the canonical period. This seems to provide some support for...
متن کاملValues of symmetric cube L-functions and Fourier coefficients of Siegel Eisenstein series of degree-3
We obtain formulas for certain weighted sums of values of the symmetric square and triple product L-functions. As a consequence, we get exact values at the right critical point for the symmetric square and symmetric cube L-functions attached to certain cuspforms. We also give applications to Fourier coefficients of modular forms.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Comptes Rendus Mathematique
سال: 2011
ISSN: 1631-073X
DOI: 10.1016/j.crma.2011.06.013